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(b) Show that the mapping T : M
nn

  M
nn

 given by T (A) = A – AT is a linear operator

on M
nn

.

5. Let P be a fixed non-singular matrix in M
nn

. Show that the mapping T : M
nn

  M
nn

 given

by T (A) = P–1 AP is a linear operator.

6. Let V and W be vector spaces. Show that a function T : V  W is a linear transformation if

and only if T ( v
1
 +  v

2
) = 

 
T(v

1
) +  T(v

2
), for all v

1
, v

2
  V and all   .

7. Let T
1
, T

2
 : V  W be linear transformations. Define

                      T
1
 + T

2
 : V  W  by    (T

1
 + T

2
)(v) = T

1
(v) + T

2
(v),  v  V

Also, define

                     cT
1
 : V  W  by    (cT

1
)(v) = c (T

1
(v)),  v  V

Show that T
1
 + T

2
 and cT are linear transformations.

ANSWERS

1. (a) Yes      (b)  No      (c)  No      (d)  No      (e)  Yes      (f )  No      (g)  No

6.2 THE MATRIX OF A LINEAR TRANSFORMATION

In this section we will show that a linear transformation between finite-dimensional vector spaces

is uniquely determined if we know its action on an ordered basis for the domain. We will also show

that every linear transformation between finite-dimensional vector spaces has a unique matrix A
BC

with respect to the ordered bases B and C chosen for the domain and codomain, respectively.

A Linear Transformation is Determined by its Action on a Basis

One of the most useful properties of linear transformations is that, if we know how a linear map

T : V  W acts on a basis of V, then we know how it acts on the whole of V.

THEOREM 6.4   Let B = {v
1
, v

2
, ..., v

n
} be an ordered basis for a vector space V. Let W be a

vector space, and let w
1
, w

2
, ..., w

n
 be any n (not necessarily distinct) vectors in W. Then there

is one and only one linear transformation T : V  W satisfying T(v
1
) = w

1
, T(v

2
) = w

2
, ..., T(v

n
) = w

n
.

In other words, a linear transformation is determined by its action on a basis.

Proof   Let v be any vector in V. Since B = {v
1
, v

2
, ..., v

n
} is an ordered basis for V, there exist

unique scalars a
1
, a

2
, ..., a

n
 in  such that v = a

1
 v

1
 + a

2
 v

2
 + ... + a

n
 v

n
.

Define a function T : V  W by

T (v) = a
1
 w

1
 + a

2
 w

2
 + ... + a

n
 w

n

Since the scalars a
i
’s are unique, T is well-defined. We will show that T is a linear transformation.

Let x and y be two vectors in V. Then

x = b
1
 v

1
 + b

2
 v

2
 + ... + b

n
 v

n
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and y = c
1
 v

1
 + c

2
 v

2
 + ... + c

n
 v

n

for some unique b
i
’s and c

i
’s in . Then, by definition of T, we have

T (x) = b
1
 w

1
 + b

2
 w

2
 + ... + b

n
 w

n

T (y) = c
1
 w

1
 + c

2
 w

2
 + ... + c

n
 w

n

 T(x) + T(y) = (b
1
 w

1
 + b

2
 w

2
 + ... + b

n
 w

n
) + (c

1
 w

1
 + c

2
 w

2
 + ... + c

n
 w

n
)

= (b
1
 + c

1
)w

1
 + (b

2
 + c

2
)w

2
 + ... + (b

n
 + c

n
)w

n

However, x + y = (b
1
 v

1
 + b

2
 v

2
 + ... + b

n
 v

n
) + (c

1
 v

1
 + c

2
 v

2
 + ... + c

n
 v

n
)

= (b
1
 + c

1
)v

1
 + (b

2
 + c

2
)v

2
 + ... + (b

n
 + c

n
)v

n

 T (x + y) = (b
1
 + c

1
)w

1
 + (b

2
 + c

2
)w

2
 + ... + (b

n
 + c

n
)w

n
,

again by definition of T. Hence, T(x + y) = T(x) + T(y). Next, for any scalar c ,

c x = c (b
1
 v

1
 + b

2
 v

2
 + ... + b

n
 v

n
) = (cb

1
)v

1
 + (cb

2
)v

2
 + ... + (cb

n
)v

n

 T(cx) = (cb
1
)w

1
 + (cb

2
)w

2
 + ... + (cb

n
)w

n

= c(b
1
 w

1
) + c (b

2
 w

2
) + ... +c(b

n
 w

n
)

= c(b
1
 w

1
 + b

2
 w

2
 + ... + b

n
 w

n
)

= cT (x)

Hence T is a linear transformation.

To prove the uniqueness, let L : V  W be another linear transformation satisfying

L (v
1
) = w

1
,  L (v

2
) = w

2
,  ..., L (v

n
) = w

n

If v  V, then v = a
1
 v

1
 + a

2
 v

2
 + ... + a

n
 v

n
, for unique scalars a

1
, a

2
, ..., a

n
  . But then

L (v) = L(a
1
 v

1
 + a

2
 v

2
 + ... + a

n
 v

n
)

= a
1 

L (v
1
) + a

2 
L (v

2
) + ... + a

n 
L (v

n
) (   L is a L.T.)

= a
1
 w

1
 + a

2
 w

2
 + ... + a

n
 w

n 
 = T (v)

      L = T and hence T is uniquely determined.

EXAMPLE 14   Suppose L : 3  2 is a linear transformation with

L([1, –1, 0]) = [2, 1], L([0, 1, –1]) = [–1, 3]  and  L([0, 1, 0]) = [0, 1].

Find L([–1, 1, 2]). Also, give a formula for L([x, y, z]), for any [x, y, z]  3.

      [Delhi Univ. GE-2, 2017]

SOLUTION   To find  L([–1, 1, 2]), we need to express the vector v = [–1, 1, 2] as a linear

combination of vectors v
1
 = [1, –1, 0], v

2
 = [0, 1, –1] and v

3
 = [0, 1, 0]. That is, we need to find

constants a
1
, a

2
 and a

3
 such that

v = a
1 

v
1
 + a

2 
v

2
 + a

3 
v

3
,

which leads to the linear system whose augmented matrix is
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1 0 0 1

1 1 1 1

0 1 0 2

  
  
  

We transform this matrix to reduced row echelon form :

2 2 1

1 0 0 1 1 0 0 1

1 1 1 1 0 1 1 0

0 1 0 2 0 1 0 2

R R R 
     
       
       

3 3 2

1 0 0 1

0 1 1 0

0 0 1 2

R R R 
  
   
  

2 2 3

1 0 0 1

0 1 0 2

20 0 1

R R R 

 
 

  
 
  

This gives   a
1 

= –1,  a
2
 = –2, and  a

3
 = 2. So,

v = – v
1
 – 2v

2
 + 2v

3

 L(v) = L(– v
1
 – 2v

2
 + 2v

3
)

= L(– v
1
) – 2L(v

2
) + 2L(v

3
)

= –[2, 1] – 2[–1, 3] + 2[0, 1] = [0, –5]

i.e., L([–1, 1, 2]) = [0, –5]

To find L([x, y, z]) for any [x, y, z]  3, we row reduce

1 0 0 1 0 0

1 1 1      to obtain     0 1 0

0 1 0 0 0 1

x x

y z

z x y z

   
       
        

Thus, [x, y, z] = x
 
v

1
 – z

 
v

2
 + (x + y + z)

 
v

3

 L([x, y, z]) = L(x
 
v

1
 – z

 
v

2
 + (x + y + z)

 
v

3
)

= x
 
L(v

1
) – z

 
L(v

2
) + (x + y + z)L(v

3
)

= x[2, 1] – z[–1, 3] + (x + y + z)
 
[0, 1]

= [2x + z, 2x + y – 2z].

EXAMPLE 15   Suppose L : 2  2 is a linear operator and L([1, 1]) = [1, –3] and

L([–2, 3]) = [–4, 2]. Express L([1, 0]) and L([0, 1]) as linear combinations of the vectors

[1, 0] and [0, 1].       [Delhi Univ. GE-2, 2019]

SOLUTION   To find  L([1, 0]) and L([0, 1]), we first express the vectors v
1
 = [1, 0] and

v
2
 = [0, 1] as linear combinations of vectors w

1
 = [1, 1] and w

2
 = [–2, 3]. To do this, we row

reduce the augmented matrix
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[w
1
 w

2
 | v

1
 v

2
]  =  

1 2 1 0

1 3 0 1

  
 
 

Thus, we row reduce

2 2 1
1 2 1 0 1 2 1 0

1 3 0 1 0 5 1 1

R R R      
      

   
2 2

1

5
1 2 1 0

0 1 1/ 5 1/ 5

R R   
   

 
1 1 2

2 1 0 3/ 5 2 / 5

0 1 1/ 5 1/ 5

R R R   
   

 v
1

=  
3

5
w

1
  –  

1

5
w

2
     and     v

2
 = 

2

5
w

1
  + 

1

5
w

2

This gives L(v
1
) = 

3

5
L (w

1
)  – 

1

5
L (w

2
)

= 
3

5
L([1, 1]) – 

1

5
L([–2, 3])

= 
3

5
[1, –3] – 

1

5
[–4, 2] = 

7 11 7 11
, [1, 0] [0, 1]

5 5 5 5

 
  

 

and L(v
2
) = 

2

5
L (w

1
)  + 

1

5
L (w

2
)

= 
2

5
L([1, 1]) + 

1

5
L([–2, 3])

= 
2

5
[1, –3] + 

1

5
[–4, 2] = 

2 4 2 4
, [1, 0] [0, 1].

5 5 5 5

       

The Matrix of a Linear Transformation

We now show that any linear transformation on a finite-dimensional vector space can be expressed

as a matrix multiplication. This will enable us to find the effect of any linear transformation by

simply using matrix multiplication.

Let V and W be non-trivial vector spaces, with dim V = n and dim W = m. Let B = {v
1
, v

2
, ..., v

n
}

and C = {w
1
, w

2
, ..., w

m
} be ordered bases for V and W, respectively. Let T : V  W be a linear

transformation. For each v in V, the coordinate vectors for v and T (v) with respect to ordered

bases B and C are [v]
B
 and [T (v)]

C
, respectively. Our goal is to find an m × n matrix A = (a

i j
)

(1  i  m ; 1  j  n ) such that

A[v]
B

= [T(v)]
C

...(1)
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holds for all vectors v in V. Since Equation (1) must hold for all vectors in V, it must hold, in

particular, for the basis vectors in B, that is,

    A[v
1
]
B
 = [T(v

1
)]

C
, A[v

2
]
B
 = [T(v

2
)]

C
, ...., A[v

n
]
B
 = [T(v

n
)]

C
...(2)

But     [v
1
]
B
 = 

1

0
,

0

 
 
 
 
 
  


     [v

2
]
B
 = 

0

1
,

0

 
 
 
 
 
  


   ....,   [v

n
]
B
 = 

0

0
,

1

 
 
 
 
 
  



 A[v
1
]
B

= 

11 12 1 11

21 22 2 21

1 2 1

1

0

0

n

n

m m mn m

a a a a

a a a a

a a a a

    
    
     
    
    

        





    



A[v
2
]
B

= 

11 12 1 12

21 22 2 22

1 2 2

0

1

0

n

n

m m mn m

a a a a

a a a a

a a a a

    
    
     
    
    

        





    



A[v
n
]
B

= 

11 12 1 1

21 22 2 2

1 2

0

0

1

n n

n n

m m mn mn

a a a a

a a a a

a a a a

    
    
     
    
    

        





    



Substituting these results into (2), we obtain

          

11

21

1m

a

a

a

 
 
 
 
 
  


 = [T(v

1
)]

C
,    

12

22

2m

a

a

a

 
 
 
 
 
  


 = [T(v

2
)]

C
,    ......,     

1

2

n

n

mn

a

a

a

 
 
 
 
 
  


 = [T(v

n
)]

C
,

This shows that the successive columns of A are the coordinate vectors of T(v
1
), T(v

2
), ..., T(v

n
)

with respect to the ordered basis C. Thus, the matrix A is given by

A = [[T(v
1
)]

C
  [T(v

2
)]

C
       [T(v

n
)]

C
]

We will call this matrix as the matrix of T relative to the bases B and C and will denote it by the

symbol A
BC

 or [T ]
BC

. Thus,

A
BC

= [[T(v
1
)]

C
  [T(v

2
)]

C
 ...  T(v

n
)]

C
]

From (1), the matrix A
BC

 satisfies the property

A
BC 

[v]
B

= [T(v)]
C
  for all v  V.

We have thus proved :
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THEOREM 6.5   Let V and W be non-trivial vector spaces, with dim(V) = n and dim(W) = m.

Let B = {v
1
, v

2
, ..., v

n
} and C = {w

1
, w

2
, ..., w

m
} be ordered bases for V and W, respectively. Let

T : V  W be a linear transformation. Then there is a unique m × n matrix A
BC

 such that

A
BC

[v]
B
 = [T [v]]

C
, for all v  V. (That is A

BC 
times the coordinatization of v with respect to B

gives the coordinatization of T (v) with respect to C).

Furthermore, for 1  i  n, the ith column of A
BC

 = [T [v
i
]]

C
.

EXAMPLE 16   Let T : 3  3 be the linear operator given by T ([x
1
, x

2
, x

3
]) = [3x

1
 + x

2
,

x
1
 + x

3
, x

1
 – x

3
]. Find the matrix for T with respect to the standard basis for 3.

SOLUTION   The standard basis for 3 is B = {e
1
 = [1, 0, 0], e

2
 = [0, 1, 0], e

3
 = [0, 0, 1]}.

Substituting each standard basis vector into the given formula for T shows that

T(e
1
) = [3, 1, 1],   T(e

2
) = [1, 0, 0],    T(e

3
) = [0, 1, –1]

Since the coordinate vector of any element [x
1
, x

2
, x

3
] in 3 with respect to the standard basis

{e
1
, e

2
, e

3
} is 

1

2

3

,

x

x

x

 
 
 
  

 we have

[T(e
1
)]

B
= 

3

1 ,

1

 
 
 
  

      [T(e
2
)]

B
 = 

1

0 ,

0

 
 
 
  

      [T(e
3
)]

B
 = 

0

1

1

 
 
 
  

Thus, the matrix A
BB

 for T with respect to the standard basis is :

A
BB

= [[T(e
1
)]

B   
[T(e

2
)]

B    
[T(e

3
)]

B
]
  

= 

3 1 0

1 0 1

1 0 1

 
 
 
  

.

EXAMPLE 17   Let T : P
3
  3 be the linear transformation given by T (ax3 + bx2 + cx + d )

= [4a – b + 3c + 3d, a + 3b – c + 5d, –2a – 7b + 5c – d]. Find the matrix for T with respect to the

standard bases B = {x3, x2, x, 1} for P
3
 and C = {e

1
, e

2
, e

3
} for 3.

SOLUTION   Substituting each standard basis vector in B into the given formula for T shows that

T(x3) = [4, 1, –2],  T (x2) = [–1, 3, –7],  T (x) = [3, –1, 5] and T (1) = [3, 5, –1]. Since we are using

the standard basis C for 3,

[T (x3)]
C

= 

4

1 ,

2

 
 
 
  

      [T (x2)]
C
 = 

1

3 ,

7

 
 
 
  

      [T (x)]
C
 = 

3

1 ,

5

 
  
  

      [T (1)]
C
 = 

3

5

1

 
 
 
  

Thus, the matrix of T with respect to the bases B and C is:

A
BC

= [ [T (x3)]
C
  [T (x2)]

C  
[T (x)]

C  
[T (1)]

C
] = 

4 1 3 3

1 3 1 5

2 7 5 1

 
  
    

.
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EXAMPLE 18   Let T : P
3
  P

2
 be the linear transformation given by T (p) = p, where p  P

3
.

Find the matrix for T with respect to the standard bases for P
3
 and P

2
. Use this matrix to calculate

T(4x3 – 5x2 + 6x – 7) by matrix multiplication.

SOLUTION   The standard basis for P
3 

is B = {x3, x2, x, 1}, and the standard basis for P
2 

is

C = {x2, x, 1}. Computing the derivative of each polynomial in the standard bases B for P
3
 shows

that

T(x3) = 3x2,   T(x2) = 2x,   T(x) = 1,  and  T(1) = 0.

We convert these resulting polynomials in P
2
 to vectors in 3 :

      3x2  [3, 0, 0] ;      2x  [0, 2, 0] ;      1  [0, 0, 1] ;   and   0  [0, 0, 0].

Using each of these vectors as columns yields

A
BC

= 

3 0 0 0

0 2 0 0 .

0 0 1 0

 
 
 
  

We will compute T (4x3 – 5x2 + 6x – 7) using this matrix. Now,

[4x3 – 5x2 + 6x – 7]
B

= 

4

5

6

7

 
  
 
 
  

Hence,

[T(4x3 – 5x2 + 6x – 7)]
C

= A
BC

[4x3 – 5x2 + 6x – 7]
B
 = 

4
3 0 0 0 12

5
0 2 0 0 10 .

6
0 0 1 0 6

7

 
              
         

Converting back from C-coordinates to polynomials gives

T (4x3 – 5x2 + 6x – 7) = 12x2 – 10x + 6.

EXAMPLE 19   Let T : 3  2 be the linear transformation given by T ([x
1
, x

2
, x

3
]) = [–2x

1
 + 3x

3
,

x
1
 + 2x

2
 – x

3
]. Find the matrix for T with respect to the ordered bases B = {[1, –3, 2], [–4, 13, –3],

[2, –3, 20]} for 3 and C = {[–2, –1], [5, 3]} for 2. [Delhi Univ. GE-2, 2019(Modified)]

SOLUTION   By definition, the matrix A
BC

 of T with respect to the ordered bases B and C is given

by A
BC

 = [[T(v
1
)]

C
  [T(v

2
)]

C
  [T(v

3
)]

C
], where v

1
 = [1, –3, 2], v

2
 = [–4, 13, –3], and v

3
 = [2, –3, 20]

are the basis vectors in B. Substituting each basis vector in B into the given formula for T shows that

T(v
1
) = [4, –7],   T(v

2
) = [–1, 25],    T(v

3
) = [56, –24]

Next, we must find the coordinate vector of each of these images in 2 with respect to the C

basis. To do this, we use the Coordinatization Method. Thus, we must row reduce matrix

[w
1
   w

2
  |  T (v

1
)   T (v

2
)   T (v

3
)],

where w
1
 = [–2, –1], w

2
 = [5, 3] are the basis vectors in C. Thus, we row reduce
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2 5 4 1 56 1 0 47 128 288
   to obtain   

1 3 7 25 24 0 1 18 51 104

      
          

Hence  [T (v
1
)]

C
  = 

47
,

18

 
  

      [T (v
2
)]

C
 = 

128
,

51

 
 
 

      [T (v
3
)]

C
 = 

288

104

 
  

  The matrix of T with respect to the bases B and C is A
BC

 = 
47 128 288

18 51 104

  
   

.

Finding the New Matrix for a Linear Transformation After a Change of Basis

We now state a theorem (proof omitted) which helps us in computing the matrix for a linear

transformation when we change the bases for the domain and codomain.

THEOREM 6.6   Let V and W be two non-trivial finite-dimensional vector spaces with ordered

bases B and C, respectively. Let T : V  W be a linear transformation with matrix A
BC

 with

respect to bases B and C. Suppose that D and E are other ordered bases for V and W, respectively.

Let P be the transition matrix from B to D, and let Q be the transition matrix from C to E. Then

the matrix A
DE

 for T with respect to bases D and E is given by A
DE

 = QA
BC

 P–1.

EXAMPLE 20   Let T : 3  3 be the linear operator given by T [(a, b, c)] = [–2a + b,

–b – c, a + 3c].

(a) Find the matrix A
BB

 for T with respect to the standard basis B = {e
1
 = [1, 0, 0], e

2
 = [0, 1, 0],

e
3
 = [0, 0, 1]} for 3.

(b) Use part (a) to find the matrix A
DE

 with respect to the standard bases D = {[15, –6, 4],

[2, 0, 1], [3, –1, 1]} and E = {[1, –3, 1], [0, 3, –1], [2, –2, 1]}.

SOLUTION   (a)  We have T (e
1
) = [–2, 0, 1], T (e

2
) = [1, –1, 0], T (e

3
) = [0, –1, 3]}. Using each

of these vectors as columns yields the matrix A
BB 

:

A
BB

= 

2 1 0

0 1 1

1 0 3

 
   
  
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(b) To find A
DE

, we make use of the following relationship :

A
DE

= QA
BB

 P –1, ...(1)

where P is the transition matrix from B to D and Q is the transition matrix from B to E. Since P–1 is

the transition matrix from D to B and B is the standard basis for 3, it is given by

P –1 = 

15 2 3

6 0 1

4 1 1

 
   
  

To find Q, we first find Q –1, the transition matrix from E to B, which is given by

Q –1 = 

1 0 2

3 3 2

1 1 1

 
   
  

It can be easily checked that

Q = (Q –1)–1 = 

1 2 6

1 1 4

0 1 3

  
   
  

Hence, using Eq. (1), we obtain

A
DE

 = Q A
BB

 P –1 = 

1 2 6 2 1 0 15 2 3

1 1 4 0 1 1 6 0 1

0 1 3 1 0 3 4 1 1

       
               
          

 = 

202 32 43

146 23 31 .

83 14 18

   
    
  

EXAMPLE 21   Let T : P
3
  3 be the linear transformation given by T (ax3 + bx2 + cx + d )

= [c + d, 2b, a – d].

(a) Find the matrix A
BC

 for T with respect to the standard bases B (for P
3
) and C (for 3).

(b) Use part (a) to find the matrix A
DE

 for T with respect to the standard bases D = {x3 + x2,

x2 + x, x + 1, 1} for P
3 

and E = {[–2, 1, –3], [1, –3, 0], [3, –6, 2]} for 3.

SOLUTION   (a)  To find the matrix A
BC

 for T with respect to the standard bases B = {x3, x2, x, 1}

for P
3
 and C = {e

1
 = [1, 0, 0], e

2
 = [0, 1, 0], e

3
 = [0, 0, 1]} for 3, we first need to find T (v) for

each v  B. By definition of T, we have

      T (x3) = [0, 0, 1],     T (x2) = [0, 2, 0],     T (x) = [1, 0, 0]     and     T (1) = [1, 0, –1]

Since we are using the standard basis C for 3, the matrix A
BC

 for T is the matrix whose columns

are these images. Thus

A
BC

= 

0 0 1 1

0 2 0 0

1 0 0 1

 
 
 
  

(b)  To find A
DE

, we make use of the following relationship :

A
DE

= QA
BC

 P –1 ...(1)
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where P is the transition matrix from B to D and Q is the transition matrix C to E. Since P is the

transition matrix from B to D, therefore P–1 is the transition matrix from D to B. To compute

P –1, we need to convert the polynomials in D into vectors in 4. This is done by converting each

polynomial ax3 + bx2 + cx + d in D to [a, b, c, d]. Thus

  (x3 + x2)  [1, 1, 0, 0] ;  (x2 + x)  [0, 1, 1, 0] ;  (x + 1)  [0, 0, 1, 1] ;  (1)  [0, 0, 0, 1]

Since B is the standard basis for 3, the transition matrix (P–1) from D to B is obtained by using

each of these vectors as columns :

P–1 = 

1 0 0 0

1 1 0 0

0 1 1 0

0 0 1 1

 
 
 
 
 
  

To find Q, we first find Q–1, the transition matrix from E to C, which is the matrix whose columns

are the vectors in E.

Q –1 = 

2 1 3

1 3 6

3 0 2

 
   
  

 Q = (Q –1)–1 = 

1
2 1 3 6 2 3

1 3 6 16 5 9

3 0 2 9 3 5

     
         
        

Hence, A
DE

 = QA
BC

P–1 = 

1 0 0 0
6 2 3 0 0 1 1

1 1 0 0
16 5 9 0 2 0 0

0 1 1 0
9 3 5 1 0 0 1

0 0 1 1

 
      
          
             

 = 

1 10 15 9

1 26 41 25 .

1 15 23 14

    
 
 
     

6.3 LINEAR OPERATORS AND SIMILARITY

In this section we will show that any two matrices for the same linear operator (on a finite-dimensional

vector space) with respect to different ordered bases are similar.

Let V be a finite-dimensional vector space with ordered bases B and C, and let T : V  V be a

linear operator. Then we can find two matrices, A
BB

 and A
CC

, for T with respect to ordered bases

B and C, respectively. We will show that A
BB

 and A
CC

 are similar. To prove this, let P denote the

transition matrix (P
CB) from B to C. Then by Theorem 6.6, we have

A
CC

= P A
BB

 P–1                A
BB

 = P –1 A
CC

 P

This shows that the matrices A
BB

 and A
CC

 are similar. We have thus proved the following:

THEOREM 6.7   Let V be a finite-dimensional vector space with ordered bases B and C. Let T

be a linear operator on V. Then the matrix A
BB

 for T with respect to the basis B is similar to the

matrix A
CC

 for T with respect to the basis C. More specifically, if P is the transition matrix from

B to C, then A
BB

 = P–1 A
CC

 P.


