6.12 Linear Algebra
(b) Show that the mapping T: M, — M  given by T(4) = A — AT is a linear operator
on M, .

5. Let P be a fixed non-singular matrix in J/, . Show that the mapping 7': M, — M, given
by T(4) = P! AP is a linear operator.

6. Let Vand W be vector spaces. Show that a function 7: V' — W is a linear transformation if
and only if 7(av, + Bv,)) = aT(v)) + BT(v,), forall v, v, € Vand all a, S € R.
7. LetT,,T,:V— W hbe linear transformations. Define
I +T,:V>Wby (T,+T)»)=T\()+T,(»), veV
Also, define
cT,:V—>Wby (cT)w)=c(T)(v), velV
Show that 7| + T, and cT are linear transformations.

ANSWERS

1. (a) Yes (b) No (¢) No (d) No (e) Yes (f) No (g) No

6.2 THE MATRIX OF A LINEAR TRANSFORMATION

In this section we will show that a linear transformation between finite-dimensional vector spaces
is uniquely determined if we know its action on an ordered basis for the domain. We will also show
that every linear transformation between finite-dimensional vector spaces has a unique matrix 4 .-
with respect to the ordered bases B and C chosen for the domain and codomain, respectively.

A Linear Transformation is Determined by its Action on a Basis

One of the most useful properties of linear transformations is that, if we know how a linear map
T :V — W acts on a basis of V, then we know how it acts on the whole of V.

THEOREM 6.4 Let B = {v,, v,, ..., v,} be an ordered basis for a vector space V. Let W be a
vector space, and let w, w,, ..., w, be any 7 (not necessarily distinct) vectors in . Then there
is one and only one linear transformation 7': V' — W satistying T'(v)) = w,, T(v)) =w,, .., T(v,) =w,.

In other words, a linear transformation is determined by its action on a basis.

Proof Let v be any vector in V. Since B = {v,, v,, ..., v,} is an ordered basis for V, there exist
unique scalars a,, a,, ..., @, in Rsuchthatv=a, v, +a,v,+..+a, v,.

Define a function 7: V' — W by
T(v) =ay,w, ta,w,+..+a,w,

Since the scalars a,’s are unique, T'is well-defined. We will show that 7'is a linear transformation.
Let x and y be two vectors in V. Then

x =b v, tbyv,+..+b v,
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and y=cvtev,t.te v,
for some unique b,’s and ¢,’s in R. Then, by definition of 7, we have
T(x) =b,w, +by,w,+..+b w,
T(y) =c,wyte,wy,+...+c,w,
T(x) +TQy) =, wy+byw, +..+b w)+(c,w +c,w,+...+c, w,)
=(b, +cpw, +(by tc)w, + ...+ (b, +c)w,
However, x+ty =bvytbyv,+..+bv)+(cvyte,v,+..+c )
=(b, +cpv, +(by + )y, + ..+ (b, + v,
T(x+y) =(b, +cpw, + (b, +c)w, + ...+ (b, +c,w,
again by definition of 7. Hence, T(x + y) = T(x) + T(y). Next, for any scalar ¢ € R,
cx =c(byvytbyv,+..+b v)=(ch)v,+(cb)v,+ .. +(chb)v,
= T(cx) = (cb)w, + (cby)w, + ... + (cb,)w,
=c(byw)) +c(byw,y) + ... +c(b, w,)
=cbyw, +byw,+...+b w,)
=cT(x)

Hence T is a linear transformation.
To prove the uniqueness, let L : V" — W be another linear transformation satisfying
L) =w;, L(v)=w, ..,L(v,)=w,
IfveV thenv=aqa v, +a,v,+..+a, v, forunique scalars a, a,, ..., a, € R. But then
L(v) =L(a,vyta,v,*..+a,v,)
=a,L(v)+a,L(vy) +..+a,L(v,) (.~ LisaLT)
=a,w ta,w,+..+taw, =T(

= L =Tand hence T is uniquely determined.

EXAMPLE 14 Suppose L : R? — R?is a linear transformation with
L([1, -1, 0]) =[2, 1], L([O0, 1, -1]) = [-1, 3] and L([O, 1, O]) =[O, 1].
Find L([-1, 1, 2]). Also, give a formula for L([x, , z]), for any [x, ), z] € R3.
[Delhi Univ. GE-2,2017]

SOLUTION To find L([-1, 1, 2]), we need to express the vector v = [-1, 1, 2] as a linear
combination of vectors v, = [1, -1, 0], v, = [0, 1, —1] and v, = [0, 1, 0]. That is, we need to find
constants a,, a, and a, such that

14 :a1v1+a2v2+a3v3,
which leads to the linear system whose augmented matrix is
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1 0 0[-1
-1 1 1| 1
0 -1 0] 2
We transform this matrix to reduced row echelon form :
1 0 0]-1 1 0 0]-1
101 1l 1 2R R 1y ] o
0 -1 0] 2 0 -1 0| 2
(1 0 o0]-1
Ry > Ry + R, o1 1l o
00 1|2
i o o
_ KRRk | 0l=2
0 0 2
This gives a,=-1, a,=-2,and a; =2. So,
v =—v, —2v,+2v,
= L(v) =L(=v, —2v, +2v,)

= L(=v,) - 2L(»,) + 2L(v,)
=02, 1] - 2[-1, 3] + 2[0, 1] = [0, 5]

ie. L([-1, 1, 2]) = [0, 5]
To find L([x, y, z]) for any [x, 3, z] € R3, we row reduce
1 0 Ofx 1 00 X
-1 1 1|y to obtain 0 10 -z
0 -1 0|z 0 0 l|x+ty+z
Thus, [x, 3, z] =xv;—zv, T (x+y+z)v,
= L([x, y, z]) =L(xv,—zv, + (x +y +2)v,)

=xL(v)—zL(v,) +(x+y+z)L(vy)
=x[2,1]—z[-1,3]+(x +y+2)][0, 1]
=[2x+z 2x+y—2z].

Linear Algebra

EXAMPLE 15 Suppose L : R?> - R? is a linear operator and L([1, 1]) = [1, —3] and
L([-2, 3]) = [-4, 2]. Express L([1, 0]) and L([0, 1]) as linear combinations of the vectors

[1, 0] and [0, 1].

[Delhi Univ. GE-2, 2019]

SOLUTION To find L([1, 0]) and L([0, 1]), we first express the vectors v, = [1, 0] and
v, = [0, 1] as linear combinations of vectors w, = [1, 1] and w, = [-2, 3]. To do this, we row

reduce the augmented matrix
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1 2|1 0
Deewa vl =1 500

Thus, we row reduce

1 -2/10 R—>R-R |1 =210
%
1 3|0 1 10 5]-1 1
1 _
R2_>gR2 1 —2 1 0
_—
10 1|=1/S 1/5
R >R +2r, |1 0] 3/5 2/5
o 1f-1/s 15
3 1 2 1
= IS ST ™ and v,= S™ + "2
o 3 1
This gives L(v)) = gL(wl) — gL(Wz)

ELll lL 2,3
5([: ])75 ([77 ])

3 1 P N _
= g[l, -3] - g[—4, 2] = |:§, —5i| = 5[1, 0] 5 [0, 1]
2 1
and L(v,) = gL(wl) + gL(Wz)
_2 1
= SLAL 1)+ gL([—Z 3D
2 1 -2 -4 2 4
= g[l,—3] + g[—4, 2] = [?, ?} = 5[l, 0] 5[0, 1].

The Matrix of a Linear Transformation

We now show that any linear transformation on a finite-dimensional vector space can be expressed
as a matrix multiplication. This will enable us to find the effect of any linear transformation by
simply using matrix multiplication.

Let V and W be non-trivial vector spaces, with dim V'=n and dim W= m. Let B= {v,, v, ..., v, }
and C = {w,, w,, ..., w,} be ordered bases for V" and W, respectively. Let T: V' — W be a linear
transformation. For each v in V, the coordinate vectors for v and 7'(v) with respect to ordered
bases B and C are [v]; and [T(v)], respectively. Our goal is to find an m x n matrix 4 = (q, j)
(1<i<m;1<j<n)such that

Av]y = [TM]e (1)
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holds for all vectors v in V. Since Equation (1) must hold for all vectors in V, it must hold, in
particular, for the basis vectors in B, that is,

Al = [T s A, = [T s oo A, 15 = [T(V)] ..(2)

0 0
0
But  [v];= | Wl =1| .|» o [MIg= %
0 0 1
ap ap a1 ap
_|a ayp o ay, [0 |ap
A, =| 2 =]
L%m1  9m2 Amn | _0_ L%m1
ayp ap coa, |0 app
C|a ayp o oay, |1 | axn
Ayl = | L=
L1 9m2 " G | _0_ L9m2 |
ay ap o, (|0 a,
_ @ apn o oay |0 |a,
Alv, ], = | : =
L9m1 9m2 " 9pn | _1_ | mn |
Substituting these results into (2), we obtain
a1 ap i
a1 ax &
. = [T(vl)]C5 : = [T(vz)]ca """ > = [T(vn)]C>
Am1 (2% Qun

This shows that the successive columns of 4 are the coordinate vectors of 7(v,), 7(v,), ..., T(v,)
with respect to the ordered basis C. Thus, the matrix A4 is given by

A =[ToDle [Tole  [To]]

We will call this matrix as the matrix of 7 relative to the bases B and C and will denote it by the
symbol A or [T]g.. Thus,

Age = [[Tv)]c [Tl - T,)]c]
From (1), the matrix 4. satisfies the property
Ape [Vlg =[T(W)], forallv e V.

We have thus proved :
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( THEOREM 6.5 Let I and W be non-trivial vector spaces, with dim(») = n and dim(W) = m. )
LetB={v,v,,..,v,} and C= {w, w,, ..., w, } be ordered bases for /" and W, respectively. Let
T:V — W be a linear transformation. Then there is a unique m % n matrix 4, such that
Agdvlg = [T[v]] for all v € V. (That is 4, times the coordinatization of v with respect to B
gives the coordinatization of 7'(v) with respect to C).

Furthermore, for 1 <i < n, the ith column of 4. = [T[v]].

g J

EXAMPLE 16 Let 7: R® — R3be the linear operator given by T([x,, x,, x;]) = [3x, + x,,
x, + X3, x; — x;]. Find the matrix for 7 with respect to the standard basis for R>.

SOLUTION The standard basis for R> is B = {e, = [1, 0, 0], e, = [0, 1, 0], e; = [0, O, 1]}.
Substituting each standard basis vector into the given formula for 7 shows that
T(e,) =1[3,1,1], T(e,)=[1,0,0], T(ey)=1[0,1,~-1]
Since the coordinate vector of any element [x,, x,, x,] in R* with respect to the standard basis
X
{e;s ey, €5} is | X2 |» we have
X3
3 1 0
[TePlp = |1 [T(e)]p=10]  [T(el=]| 1
1 0 -1

Thus, the matrix 4, for 7 with respect to the standard basis is :

0

3.1
ABB = [[T(el)]B [T(ez)]B [T(eg,)]g] =10 1
1 0 -1

EXAMPLE 17 Let T: 2, — R3be the linear transformation given by T'(ax®+ bx? + cx + d)
=[4a—b+3c+3d,a+3b—-c+5d,—2a—7b+ 5c— d]. Find the matrix for T with respect to the
standard bases B = {x°, x, x, 1} for 2, and C = {e,, e,, e,} for R>.

SOLUTION Substituting each standard basis vector in B into the given formula for 7' shows that
T(3)=[4,1,-2], T(x*) =[-1,3,-7], T(x)=[3,-1, 5] and T(1) =[3, 5, —1]. Since we are using
the standard basis C for R3,

4 -1 3 3
[T =| Y [TDle=| 3} [T@le= |1 [TMle=]| 5
i) -7 5 -1

Thus, the matrix of T with respect to the bases B and C is:
4 -1 3

Ay = [T [T [TE)] [T =] 1 3 -1 5]
-2 -7 5 -1
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EXAMPLE 18 Let T': 2; — 2, be the linear transformation given by T(p) = p', where p € 2,.
Find the matrix for 7 with respect to the standard bases for 2; and 2,. Use this matrix to calculate
T(4x3 — 5x* + 6x — 7) by matrix multiplication.

SOLUTION  The standard basis for 2, is B = {x?, x%, x, 1}, and the standard basis for 2, is
C = {x2, x, 1}. Computing the derivative of each polynomial in the standard bases B for 2, shows
that
T(x*) =3x2, T(x*)=2x, T(x)=1, and T(1)=0.

We convert these resulting polynomials in 2, to vectors in R?:

3x? > [3,0,0]; 2x—[0,2,0]; 1—-10,0,1]; and 0 — [0, 0, 0].
Using each of these vectors as columns yields
(30 0 0

ABC:02OO.
10 0 10

We will compute T'(4x> — 5x + 6x — 7) using this matrix. Now,

4
=5
[4x° —5x? +6x—T]p=| ¢
=7
Hence,
4
3000 5 12
[T(4x3 = 5x% + 6x — )] = Apc[4x> = 5x2 + 6x = T],= |0 2 0 0 6l = -10 .
0010 , 6

Converting back from C-coordinates to polynomials gives
T(4x> — 5x> + 6x — 7) = 12x> — 10x + 6.

EXAMPLE 19 Let 7: R?> — R?be the linear transformation given by 7'([x,, x,, x,]) = [-2x, + 3x;,
x, + 2x, — x;]. Find the matrix for 7 with respect to the ordered bases B = {[1, -3, 2], [-4, 13, -3],
[2, -3, 20]} for R3 and C = {[-2, —1], [5, 3]} for R>. [Delhi Univ. GE-2,2019(Modified)]

SOLUTION By definition, the matrix 4 5. of 7 with respect to the ordered bases B and C'is given

by Ag- = [[TO)]- [T(Wle [T(y)]], where v, =[1, -3, 2], v, = [-4, 13, -3], and v, = [2, -3, 20]

are the basis vectors in B. Substituting each basis vector in B into the given formula for 7' shows that
T(vy) =1[4,-7], T(vy =[-1,25], T(v;)=[56,-24]

Next, we must find the coordinate vector of each of these images in R? with respect to the C

basis. To do this, we use the Coordinatization Method. Thus, we must row reduce matrix

wy wy | T(vy) T(v,) T(vy)],
where w, = [-2, 1], w, = [5, 3] are the basis vectors in C. Thus, we row reduce
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-2 5/ 4 -1 56 . 1 0(—47 128 -288
to obtain
{—1 3‘—7 25 —24} {0 l‘—lS 51 —104}

128 —288
Hence [T(v)]. = {—18}’ [(T(vy)]= { 51}’ [Tyl = {_104}

—47 128 —288}

. The matrix of T with respect to the bases B and C is A5 = {—18 s1 104

Finding the New Matrix for a Linear Transformation After a Change of Basis

We now state a theorem (proof omitted) which helps us in computing the matrix for a linear
transformation when we change the bases for the domain and codomain.

THEOREM 6.6 Let Vand W be two non-trivial finite-dimensional vector spaces with ordered
bases B and C, respectively. Let 7: V' — W be a linear transformation with matrix 4, with
respect to bases B and C. Suppose that D and E are other ordered bases for /" and W, respectively.
Let P be the transition matrix from B to D, and let @ be the transition matrix from C to £. Then
the matrix 4, for T with respect to bases D and E is given by A,, = QA P,

Ay

[v]s » [TV)]
Matrix for T using B, C
Transition Transition
matrix P matrix Q
A
[v]/) = > [T(v)]l
Matrix for 7 using D, E

FIGURE 6.6 Illustrates the situation in Theorem 6.6
EXAMPLE 20 Let T: R?> — R?be the linear operator given by T[(a, b, ¢)] = [-2a + b,
-b—c,a+3c].

(a)  Find the matrix A, for T with respect to the standard basis B = {e, = [1, 0, 0], e, = [0, 1, 0],
e; = [0, 0, 1]} for R3.

(b)  Use part (@) to find the matrix A4, with respect to the standard bases D = {[15, -6, 4],
[2,0,1],[3,-1, 1]} and E = {[1, -3, 1], [0, 3, —1], [2, -2, 1]}.

SOLUTION (a) We have T(e,) =[-2, 0, 1], T(e,) = [1, —1, 0], T(ey) = [0, -1, 3]}. Using each
of these vectors as columns yields the matrix 4, :
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(b) To find 4, we make use of the following relationship :

- -1

App = QAg, P, (1)
where P is the transition matrix from B to D and @ is the transition matrix from B to E. Since P! is
the transition matrix from D to B and B is the standard basis for R, it is given by

15 2 3
Pfl —|-6 0 -1
4 1 1

To find Q, we first find Q~!, the transition matrix from E to B, which is given by

1 0 2
o' =3 3 2
|1 -1 1
It can be easily checked that
(1 -2 -6
Q:(Q—l)—l =1 -1 4
0 1 3

Hence, using Eq. (1), we obtain

1 -2 -6(|-2 1 0]|15 2 3 202 -32 -43
_ -1 — 9 1 —1ll- ) == 23 _
ADE = QABB Pl =1 -1 4 0 -1 -1 6 0 —-1| =|-146 -23 -31|.
0 1 3 1 0 3 4 1 1 83 14 18
EXAMPLE 21 Let T: 2, - R®be the linear transformation given by T(ax® + bx? + cx + d)

=[c+d, 2b,a—d].
(a)  Find the matrix A, for T with respect to the standard bases B (for 2;) and C (for R?).

(b)  Use part (a) to find the matrix 4, for T with respect to the standard bases D = {x> + x2,
x*+x,x+ 1,1} for 2, and E = {[-2, 1, -3], [1, -3, 0], [3, -6, 2]} for R

SOLUTION (a) To find the matrix 4. for 7' with respect to the standard bases B = (3, X%, x, 1}
for 2, and C = {e, =[1, 0, 0], ¢, = [0, 1, 0], e, = [0, O, 1]} for R3, we first need to find T(v) for
each v € B. By definition of 7, we have

() =10,0,1], T(*)=[0,2,0], T(x)=[1,0,0] and T(1)=[1,0,-1]

Since we are using the standard basis C for R?, the matrix 4. for Tis the matrix whose columns
are these images. Thus

00 1 1
Ay =020 0
100 -1

(b) To find A4 ,,, we make use of the following relationship :

Ay, = QAy. P! (1)
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where P is the transition matrix from B to D and Q is the transition matrix C to E. Since P is the
transition matrix from B to D, therefore P! is the transition matrix from D to B. To compute
P!, we need to convert the polynomials in D into vectors in R*. This is done by converting each
polynomial ax?® + bx%> + cx + d in D to [a, b, c, d]. Thus

3 +x2) > [1,1,0,0]; (2+x) —>[0,1,1,0]; (x+1)—>[0,0,1,1]; (1) [0,0,0,1]

Since B is the standard basis for R, the transition matrix (P~1) from D to B is obtained by using
each of these vectors as columns :

100 0
1100
PU=1o 110
00 11

To find Q, we first find Q~!, the transition matrix from £ to C, which is the matrix whose columns
are the vectors in E.

2 1 3
Q—l — 1 -3 -6
-3 0 2]
2 1 31" [ 2 3
- 0=0"H'=|1 3 6| =[16 5 -9
-3 0 2] |9 -3 5
- 1000
-6 =2 3lfoo 1 0] b [l -0 -1s <9
— -1 — — —
Hence, A,,=QApP~t =116 5 =930 2.0 0) = p=| 1 2 41 25
-9 3 5|10 0 -1 -1 -15 -23 -14
- s 00 11

6.3 LINEAR OPERATORS AND SIMILARITY
In this section we will show that any two matrices for the same linear operator (on a finite-dimensional
vector space) with respect to different ordered bases are similar.

Let V' be a finite-dimensional vector space with ordered bases B and C, and let 7: V' — V be a
linear operator. Then we can find two matrices, 4, and A ., for 7 with respect to ordered bases
B and C, respectively. We will show that 4, and 4. are similar. To prove this, let P denote the
transition matrix (P _ ) from B to C. Then by Theorem 6.6, we have

Aqe =P Ay, P! = Apgp =P AP
This shows that the matrices A, and A4 .- are similar. We have thus proved the following:

THEOREM 6.7 Let ¥ be a finite-dimensional vector space with ordered bases B and C. Let T
be a linear operator on V. Then the matrix A, for T with respect to the basis B is similar to the

matrix 4 . for T with respect to the basis C. More specifically, if P is the transition matrix from
Bto C, then Agy =P A P.




